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SUMMARY
/799

The purpose of this contract is to develop a primary battery to deliver
a minimum of 200 watt-~hours per pound of battery weight. Allowing for
the added weight of electrolyte, grids, case, etc., electrode couples
of theoretical energy density of 500 watt-hours per pound will be
needed. Approximately thirty such couples are suggested.

Aprotic electrolytes are needed to avoid reaction with the active anode
materials in such systems. A program was undertaken to systematize and
expand the available information on factors governing the behavior of
conductive solutions. Progress has been made on elaborating the effects
of such solvent properties as dielectric constant, viscosity, and the
ability to solvate the ions of the solute. In addition, much information
has been gained on the relative behavior of a large number of solute
materials, indicating the effects of anion and cation size on solubility,
conductivity, and solution viscosity.

Six aprotic solvents and over 70 solutes have been investigated. From
these, over 30 solvent-solute gystems with conductivity at one-molal

concentration in excess of 10'2 ohm~1 cm™1 are now known.

The bulk of the work in this contract period has been on electrolyte
systems. Also, some exploratory tests have been conducted on the be-
havior of cell couples in the electrolytes studied. 1In addition, the
stability of several of the most promising electrode materials in

solvents and electrolytes has been determined. Finally, preliminary
stability tests have been conducted on separator and case materials/i
the more promising solvents.




INTRODUCTION

The purpose of this investigation is to develop a primary battery with
an energy density of at least 200 watt-hours per pound of total battery
weight. These batteries will operate at near-normal temperatures and
pressures.

Many electrochemical systems can be postulated which should deliver
sufficient energy per pound to meet this requirement, even allowing for
the unavoidable '"dead weight" of such items as electrolyte, grids,
separators, and case. However, in order for the energy of the active
electrode materials to be extracted from the battery, an electrolyte
must be present in order to provide the means for electric charge and
material transport to and from the electrodes. The properties of this
electrolyte will exert a major role in determining energy losses due to
polarization and resistance to current flow. Thus the availability of
a suitable electrolyte becomes the keystone upon which the structure of
the high energy battery system depends.

At the start of this contract, information on the factors governing

the behavior of conductive solutions -- particularly nonaqueous solutions =--
was scattered and incomplete. Furthermore, very few examples were known

of electrolytes with enough conductivity to permit their use even in
batteries limited to service at very low drain rates. Therefore, in

order to provide a basis to guide ourselves and others in selection of
materials for nonaqueous electrolytes, we undertook to clarify the

picture in this field as the first step in the overall program.
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THE DEVELOPMENT OF HIGH ENERGY DENSITY PRIMARY BATTERIES,

200 WATT HOURS PER POUND OF TOTAL BATTERY WEIGHT MINIMUM

by

William E. Elliott, Shih-liang Hsu, and Warren L. Towle

ABSTRACT

Electrode materials with a theoretical energy density of 500 WH/Lb are
needed to enable delivery of 200 WH/Lb in a practical battery. Aprotic
electrolytes must be used to avoid corrosion of the highly active anode
material. We have thus far developed_Qver thirty aprotic electrolytes
with conductances in excess of 1 x 10 ohm'1 em™l, We have achieved
appreciable clarification of the effects of solvent properties (dielec-
tric constant, viscosity and ability to solvate the solute ions) and
solute properties on the conductance. Some preliminary tests have

been conducted to study the stabilities of electrode and separator

materials in aprotic solvents.
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I. OVERALL PROGRESS

General Theoretical Consideratioms.

The development of high energy density (200 watt-hours per pound)
primary batteries requires the re-evaluation of potentially usable
electrode couples since commercial primary battery electrode
couples do not possess sufficiently high theoretical free energy
densities to meet the objective of this program. The inability to
realize 100% of the energy from the active material and the presence
of such "dead weight' items as separators, case, electrolyte, etc.
usually result in an energy yield efficiency of no more than 40% of
the theoretical energy density of the electrode couple. Thus a
minimum value of 500 watt-hours per pound theoretical will be re-
quired to achieve 200 watt-hours per pound for a real system.

Some of the theoretical properties of a number of electrode couples
are tabulated in Table I (page III-1) and graphically presented in
Figure 1 (page III-5). See Appendix I (page IV-1) for derivation,

1, Electrolyte.

Inspection of Table I (page III-1) shows that the re-
quirement of theoretical 500 watt-hours per pound immedi-
ately limits the suitable anode materials to highly active
metals. The use of such active metals precludes the use
of aqueous electrolytes because reaction with water would
result in wasteful corrosion of the metal and hydrogen
liberation from the water. Similarly, any nonaqueous sol-
vent containing a labile hydrogen may be attacked. Thus
the use of an aprotic solvent in the electrolyte will be
mandatory.

Certain other basic requirements must be met in the char-
acteristics of an electrolyte in order to satisfy the
requirements for good battery performance. The importance
of the first of these, namely, the conductance, is illus-
trated in Figure 2 (page I1I1-6), which shows the voltage
drop resulting from internal IR loss as a function of
conductance and current drain. A second factor will be
the effect on the electrochemical characteristics of the
electrodes themselves. Both concentration polarization
and activation polarization may be influenced by the
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particular electrolyte chosen. Thus for any given
electrode couple it may be necessary not only to find an
electrolyte of high conductance, but indeed it may be
necessary to test a large number of such electrolytes in
order to find one whose performance is acceptable. There-
fore, in order to facilitate the task of developing new
electrolyte (solvent-solute) systems, we have felt it
necessary to direct our investigation toward a clarifica-
tion of the basic factors governing the behavior of con-
ductive solutions. From such a program should emerge not
only a wealth of data on a wide variety of solvent-solute
systems but, in addition, a clarification of the factors
governing their behavior with the resultant simplification
of the task of searching for additional systems.

By analogy to aqueous systems, a nonaqueous electrolyte
may also be considered as a solute-solvent system. The
function of the solute is to provide ions which will
permit charge and material transport to and from the
electrodes. The functions of the solvent are to dissolve
the solute and to promote ionic dissociation thereof.
Thus, in addition to providing the fluid medium for sus-
pension of the dissociated ions, the solvent may provide
one or more of the following;

a. By virtue of a high dielectric constant it
may assist in promoting the dissociation of
the solute.

b. By virtue of its coordination properties,
it may provide a ligand for either the anions
or cations, and thus by reduction in charge
density thereof may further assist in their
dissociation.

A solvent of low viscosity should be expected to favor high
solution conductance by promoting ion mobility. 1In addition,
the solvent should preferably be of low density and a liquid
over the temperature range to be encountered in use. By
quantitative investigation of the above factors a clarifica-
tion of their effects on solute solubility and solution
conductance should result.

A paper, "Investigations of High Energy Density Electrochemical
Systems, Part 1 - Electrolytes,' was presented at the Power
Sources Conference, May, 1964. A copy of this paper is included
herewith as Appendix II (page IV-3) and gives comparisons
between aqueous and nonaqueous electrolytes.
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2. Electrochemistry.

Referring to Figure 1 (page III-~5) where the cell potential
is plotted against the equivalent weight of electrode couples
with energy density as the parameter, it is apparent that any
electrochemical polarization would tend to shift the system
from where it is placed downward vertically toward a lower
energy density region, whereas the horizontal shift to the
right depends on the efficiency of electrode material,
electrolyte interactions, and the design of the battery.
Since the activation polarization of the electrochemical
system is a characteristic which cannot be changed by battery
design, systems with low activation polarization would be
desirable.

It is also essential that the products of the electrochemical
reactions be either soluble or porous to permit electrolyte
penetration to the active electrode material for further
electrochemical reaction.

3. Material Stability.

a. Electrode Stability. Both the anode and the cathode
active materials must be insoluble in the solute-
solvent system to prevent internal short circuiting
and consequent loss in available energy.

b. Separator Stability. The materials considered to
be used as either separator material or case material
of a battery must be stable in the electrolyte.

Experimental Approach.

Our effort has been primarily directed toward the development of high
conductance aprotic electrolytes with some supplemental qualitative
electrochemical tests and material stability tests.

1. Electrolyte.

a. Qualitative Conductance Screening Tests. This test
was designed to screen out solute-solvent systems with
low specific conductances from consideration as battery
electrolytes and also to furnish information on the
principles governing the electrolyte conductance at
fairly high solute concentrations.




Quantitative Determination of Conductance-Concentration
Relationships. The relationships between the conductance
of the electrolyte and the concentration of the solute
were determined for systems which showed promising con-
ductance in test "a'". The purpose was to determine the
maximum obtainable conductances for these systems.

Exploratory Tests. In addition to the evaluation of the
relative importance of various factors on the conductances
of the electrolytes, we have also tried other lines of
approach to achieve high conductance.

(1) Salt-ether complexes. It is known that ether-
‘oxygen 1s an electron donor. Since Lewis acids
are electron acceptors, they should be capable
of forming complexes with the ethers. The
stability of the solvated metal ion portion of
the resulting complex should be the highest if
the metal chelate is formed in such a way that
the coordination number of the metal equals the
number of the ligand groups (ether-oxygen) in
the ether. Very high conductance might then be
obtained upon dissolving this complex in a
suitable solvent. For this reason we have
selected a group of ethers (Table II, page II1I-7)
to be used in the conductance tests.

(2) Mixed solutes. Two salts may react and form
ionizable complexes which can dissociate in the
solution and form free ions according to the
following reactions:

MR+ MK o M [ XDX]M ¢ [erxnA]”

If the products are easier to ionize in a solvent
than either MX or M'X', an improvement in con-
ductance should be observed.

(3) Mixed solvents. Although low viscosity, high
dielectric constant and high coordination power
are the desirable properties for a good solvent,
it is very unlikely that many such solvents will
be found in practice. An alternative way is to
use mixed solvents consisting of two solvents
possessing different desirable properties. Upon
varying the ratio of these two solvents, a mixed
solvent with optimum properties may be obtained.
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Electrochemistry.

Exploratory electrochemical tests were performed to obtain
qualitative information on the magnitude and stability of
the open circuit potentials of some high energy density
electrode couples in order to screen out systems with poor
characteristics. The quantitative determination of acti-
vation polarization (apparatus shown in Figure 3, page
I11+8) was postponed in order to give priority to the
study of electrolyte conductance,

Material Stability,

Stability tests were started to screen out unstable elec=-
trode-electrolyte and separator-electrolyte systems from
further consideration.

C. Experimental Techniques.

1.

Electrolyte.

In measuring the electrolytic conductance of the electrolytes

a 1 kc General Radio 1650-A Impedance Bridge (Figure 4, page
1I1-9) was used. The conductivity cells were of the dip type
with cell constants of approximately 0.1 cm~l. At the balance
of the bridge the indicated capacitance and dissipation factor
represent the properties of a R-C parallel circuit which is the
equivalent circuit of the conductivity cell plus the electrolyte.
This R represents the resistance of the electrolyte between the
two platinum electrodes of the conductivity cell, All the
specific conductance data presented in this report were cal-
culated from such R and the proper cell constants.

In order to examine many solute-solvent systems rapidly, we

chose to examine the conductances of solute-solvent mixtures at

a one-molal ratio. That is, the ratio of solute to solvent was
one g-mole to 1000 g. We then simply noted whether the solute
did or did not dissolve completely in such a mixture. Molal
solutions were used primarily because it simplified the screening
work to use weight ratios in the drybox and defined the system.

The solutes used in the conductance tests were all in anhydrous
form as received from the suppliers unless otherwise specified.

No solvent purification work has been performed to date because

we found that the presence of traces of water in most cases
exerted only minimal effect on conductance values.
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Most of the conductance measurements were made in a dry argon
atmosphere (Figure 4, page III-9 and Figure 5, page III-10).

The viscosity measurements of the electrolytes were performed
by using Ostwald-type viscosimeters at 25°C (Figure 6, page
III-11). No specific measures to isolate the sample from room
air were made during the measurements.

Electrochemistry.

To evaluate qualitatively the electrochemistry of electrodes

in the best electrolytes, small cells were constructed and
tested. Magnesium and aluminum were tested as anode materials.
A few cathode materials (CuF,, NiF,, and AgCl) were also tested,
The primary objective of this work was to establish some
knowledge of the open circuit potentials of the electrodes in
the electrolytes, and obtain an indication of the reversibility
of the electrodes as well as their ability to carry small load
currents.

The potentials of the electrodes were measured with a vacuum
tube voltmeter against an AgCl/Ag or metal strip reference
electrode (Figure 7, page III-12). The stability of reference
electrodes in nonaqueous solvents is not well established. One
reason is that so many different organic systems exist which
could be studied that investigators have only been able to
scratch the surface in comparison to the detailed studies which
have been made for aqueous reference electrodes. Therefore, it
is necessary to evaluate reference electrodes in individual non~-
aqueous systems. Several factors which are appropriate to a
good reference electrode are: (1) stable potential, (2) elec-
trochemical reversibility at low currents, i.e., about one
microampere, (3) chemical stability, and (4) the Nernst equation
should be applicable. To establish an accurate value for the
reference electrode potential versus the standard hydrogen
electrode (SHE) requires sophisticated methods. These can be
found in the literature??. However, many investigators have
used metal strip reference electrodes which are merely
calibrated for the stability of their potentials by comparisons
of the potential of the metal strip with that of freshly
prepared strips of the same metal over extended periods of time
under well defined experimental conditions. The potentials of
electrodes measured against such reference electrodes are
arbitrary and do not define the thermodynamic electrode potential
versus the SHE. However, if both half cell anode and cathode
potentials are measured against such a metal strip reference
electrode, the cell potential for the system is readily estab-
lished as follows:
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E

Ece1l = Ecathode vs. metal strip ~ Eanode vs. metal strip

or, more explicitly:

Ecell = (Bcathode ™ Fmetal strip) = (Eanode ™ Emetal strip)

=E —E

metal strip ~ E

+ E

cathode anode metal strip

= Ecathode ~ Eanode

Many other electrochemical problems exist with nonaqueous
electrolytes. Anode and cathode reversibility and efficiency
data are meager. Thus a great deal of research remains to be
done in this area before efficient nonaqueous batteries can be
built.

Material Stability.

To establish the stability of the electrode materials in the
solvents (or in electrolytes), periodic visual observationms
were made on the samples of the material immersed in the
solvent to detect gross attack of the solvent on the material.
As a measure of solubility, conductance measurements were
made on systems where the material was not attacked visually.
Weight loss was not determined where the materials were in
powder form.

In general, if the materials appeared to be stable in open
atmosphere tests, they were considered stable. However, if
they were unstable during the course of open atmosphere tests
it was necessary to repeat the tests in a dry argon atmosphere
to minimize the possible influence of moisture.

The stability of separator materials in the solvents was
determined by visual observations, conductance measurements
and viscosity measurements.

D. Experimental Tests and Results.

1.

Electrolyte.

A large number of solute-solvent systems have been tested for
conductance. Some of the properties of the tested solvents are
listed in Table ITI, page III-13,

a. Qualitative Conductance Screening Tests. All the con-
ductance screening results are presented in Table IV,
page I1I-14. The solutes are arranged in alphabetical
order, except for the organic solutes.




We have first selected four aprotic solvents; namely,
diphenyl ether, dimethylformamide (DMF), propylene
carbonate (PC), and benzonitrile (BN), and a number
of solutes including simple salts, Lewis acids and
Lewis acid-simple salt complexes for conductance
measurements. It was found that:

1. Each of the four aprotic solvents tested
yielded a range in conductance covering
several orders of magnitude. This is due
to the large variation in solute solubility.

2. The solvent is a dominating factor in
determining the overall level of conductance.
It was felt then that further study on the
coordination power, the dielectric constant
and the viscosity of the solvent would be
necessary to explain such behavior.

3. The solutes arrange themselves with rather
few exceptions in the same order of con-
ductance in the four aprotic solvents.

4, Anion size has a direct influence on the
conductance (e.g., PFg” »Cl »F7). Cation
influence is not apparent (Lit, Nat, K™, RbT,
and Cs+).*

The above findings and speculations led us to choose
three more solvents; namely, N-methylformamide (NMF),
tetramethylurea (TMU) and dimethyl cyanamide (DMC),

as well as a large number of new solutes to test further.
For the structural formulas of these solvents, see

Table TII, page III-13.

NMF is protic. However, it was chosen for study because
of its high dielectric constant (182). TMU and DMC are
both aprotic in nature. TMU was chosen to study the
effect produced on the coordinating power of the solvent
as a result of the substitution of the dimethylamino
group for the hydrogen attached to the carbonyl group of
DMF. The purpose of selecting DMC was to study the
effect of the substitution of the nitrile group for the

carbonyl group of DMF on the coordination power of the
solvent,

* In studying the ion size effect, one of the problems was that we were
unable to obtain many desired solutes from our suppliers. However, we
did prepare some of them by metathesis (e.g., KPFg + LiCl = KC1 +
LiPFg in DMF).



The new solutes we have chosen included salts with
large anions (e.g., PF¢™, BFa-, AsF¢" and SbF6')
and we have also selected some quaternary ammonium
salts because they have large cations and perhaps
better solubility.

It was found that solutions in NMF (dielectric con-
stant = 182) were only slightly more conductive than
those in DMF (dielectric constant = 37), in spite of
the large difference in dielectric constants. Thus
it appeared that the relatively high viscosity (1.8
centipoise for NMF vs. 0.8 centipoise for DMF) might
have exerted a detrimental effect on the conductance.
TMU solutions (dielectric constant = 25, viscosity =
1.4 centipoise) seemed to be consistent with the
above conclusion, since conductances in general were
even lower than those in either NMF or DMF for
comparable concentrations.

It is of interest to note that upon dissolving a
quaternary ammonium salt (of PFg~, BF, , AsF~ or
SbF6') in DMC, (dielectric constant = 36, viscosity

= 0.63 at 309C), the measured conductances were about
the same as the corresponding DMF (dielectric constant
= 37, viscosity = 0.8l at 259C) solutions. However,

an alkali metal salt (also PFg~, BF,”, AsF¢™ or SbF6')
solution in DMC showed somewhat lower conductance than
the corresponding DMF solutions. The latter phenomenon
may be due to the differeace in the ability of the
nitrile group of DMC and the carbonyl group of DMF to
coordinate with the alkali metal cations. Since the
dielectric constant and the viscosity for DMC and DMF
are about the same, the similarity in behavior of the
quaternaries in the two solvents implies that the re-
sulting conductivities are not dependent upon the
formation of coordination complexes between the solvents
and the solutes.

Inspection of all the conductance data to date reveals
that high conductance (:>10'2 ohm~1 cm~1) of aprotic
solutions can be obtained by dissolving large anion
solutes in DMF or quaternary ammonium salts with large
anions in DMC or DMF.

Quantitative Determination of Conductance-Concentration
Relationships. The relationships between specific con-
ductance and molality were determined for the following
twelve systems:

1. NaPFg-DMC
2. (n—C4H9)2NH2ASF6-DMC (Dibutylammonium Hexafluoro-
arsenate)
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(C6H5CH2)N(CH3)3SbF6-DMC (Benzyltrimethylammonium
Hexaflucroantimonate)
R CSPF6‘DMF
LiCl-DMF
KPF ¢ - DMF
NaBF4~DMF
NaPF6~DMF
SbCl3-DMF
--CHZCH
'“CHZCH
11. KPF6-PC
12. KPF6-TMU

(oo s NN Mo N W, WA w

10. (O Z*NNHz)PF6 (Morpholinium Hexafluorophosphate)
2

In some cases the viscosity-molality relationships were
also established. The results are presented in Table V,
page III-35.

It was observed in general that:

1 Maximum conductance existed at a concentration of
less than two-molal.

2. As the concentration zxcesded lhat of maximur c-n-
ductance, the viscosity increased drastically.

These facts imply that a two-molal concentration was too
crowded for the solute ions to move freely in the solvents,
and that interaction or agglomeration cof solute ions might
have taken place as indicated by the viscosity data.

The temperature coefficients of the conductance of LiCl-
DMF solutions at two different concentrations were deter-
mined, (Figure 8, page 1II-48).

It can be observed that the temperature coefficient for
the higher concentration solution was much highber than

that of the lower concentration solution.

Exploratory Tests.

1. Lewis acid-ether complexes. The addition of BF3
to the commercial 477% BF3-ether complex was per-
formed by bubbling BF4 through the complex solution
The specific conductance was recorded as a function
of time (Figure 9, page IIL-49). Slight increase
in conductance was observed




o

The additions of Lewis acids to m-dimethoxybenzene
and Bisl}-(2-methoxyethoxy)ethylﬁether were also
performed. Most of the Lewis acids reacted
exothermically with these two ethers, and resulted
in colored solutions. The conductance results are
presented in Table V{, page III-50. These solutions
are all too low 1in conductance to be used as elec-
trolytes. Other ethers tabulated in Table II,
page III-7 were not tested because of the above
negative results and some technique difficulties
of handling the ethers.

Mixed solutes. The results are presented in Table
IV, page III-14. 1t was found that in most cases
the conductances were unfavorable, although the
BeClz-SiF4-DMF system exhibited some synergistic
effect. The order of addition of the solutes did
not affect the conductance significantly.

Mixed solvents. We selected DMF and acetone as

the first example of a mixed solvent. DMF was
selected because of its good solvent power and the
good conductances of some of its solutions.

Acetone has a very low viscosity (0.316 centipoise)
and, although not aprotic, was selected to contri-
bute the low viscosity characteristic to the mixed
solvent. The solutes tested in this mixed solvent
wete KPF,. and NaPF,.. The results are presented in
Table VI1, page 1I1-51. It was noted that with
KPFg the use of mixtures of acetone with DMF gave
higher conductivities than obtained with either
solvent alone However, this effect was observed
only with KPFg solutions. These test results
demonstrate that it is feasible in certain :ases

to obtain solutions possessing improved conductance
over that of the corresponding single solvent
solutions by using the mixed solvent technique.

Another low viscosity liquid was investigated,
namely, isopropyl ether (dielectric constant = 3.9,
viscosity = 0.36 centipoise at 25°C). This material
is completely miscible with both DMF and DMC.
However, KPF, and morpholinium hexafluorophosphate
are practica?ly insoluble in it. Upon addition of
either of these salts to either isopropyl ether-~DMF
or isopropyl ether-DMC mixed solvents, the liquids
separated into two layers.
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Electrochemistry.

Eighteen electrolytes having fair to good conductance

(:>1 x 10™3 ohm™1 cm'l) were used. The anode material was
magnesium strip in all cases. Cadmium, nickel, silver-silver
chloride, nickel-nickel fluoride and copper-cupric fluoride
were used either as the counter electrodes or the reference
electrodes. The results are presented in Table VIII, page
111-54,

Poor or unstable open circuit potentials weré observed for
most of the systems tested. 'However, some of the tested
systems may be promising:

a. The charging of Mg in LiCl-DMF resulted in an open
circuit potential of about 2,8 volts against a nickel
strip (E® for 2Li + NiCly = 2LiCl + Ni is 2.57 volts).
The prospect is that Li could be used as the anode in
the LiCl-DMF electrolyte.

b. Mg and Ag-AgCl had a stable open circuit potential of
about 2.0 volts in BCl13-PC electrolyte. Tt is observed
that water might have been present in the electrolyte.
However, the best obtained open circuit potential of this
electrode couple in aqueous electrolyte is only 1.7 volts.

¢. An abnormally high stable open circuit potential of 3.1
volts was obtained for the Mg and Ni-NiFp ceuple in
KPFg-PC electrolyte after charging. Figure 10, page
II1~-62, shows the cell voltage as a function of time
through the test. These results indicate that potassium
might have been plated out on Mg and have functioned as
the active anode material.

It was learned from these qualitative electrochemical tests that
extreme care in reduction of the moisture content in the cell
systems is necessary to obtain the best results. For example,
high open circuit potential was never achieved for system "c"
described above when a moisture contaminated KPFG—PC solution
was used,

Material Stability.

The following electrode materials were tested in the solvents
DMF, PC and BN and some of their solutions:

Mg, Al, Co, Cu, Ni, NiCly, NiFp, CuF,, CoF,

-
1
[
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The results are presented in Table IX, page III-63. All
those materials appear to be reasonably stable in the
solvents and the solutes except NiCl, which was too soluble
in DMF to be used as cathode material in DMF solutionms.

The tested separator materials included dacron, cotton and
polypropylene. The results (Table X, page III-70) show
that most of the polypropylene and dacron materials tested
were stable in PC and DMF. Cotton seemed to be attacked
by DMF.
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II. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions
We have investigated the following in this contract period:

1. 8Six (6) aprotic solvents. O0f these, DMF and DMC solutions
show greatest promise for electrolytes.

2. Seventy-two (72) solutes. O0f these, twenty-two (22) show
promise as the ionic species for electrolytes. They are:

(1) KPF ¢
(2) 1ricl
(3)  Alcly
(4) (n-C4Hg)NI (Tetrabutylammonium Iodide)
(5) CsPF(
(7)  LiPFg
(8) FeCls
(10) NaBF,
(11) KasF

(12)  NaSbFg
(13)  NH,SO5F
(14)  (n-C3H7)4NBF, (Tetrapropylammonium Tetrafluoborate)
(15) (n-CyHg)9oNHpAsSFg (Dibutylammonium Hexafluoroarsenate)
(16) (n—C3H7)3NHAsF6 (Tripropylammonium Hexafluoroarsenate)
(17) (C6H5CH2)N(CH3)3SbF6 (Benzyltrimethylammonium Hexa-
fluoroantimonate)

CH NPF Tetramethylammonium Hexafluorophosphate

(18) (CH3)4NPFg ( yl f1 hosphate)

(19 (C6H5)N(CH3)3PF6 (Phenyltrimethylammonium Hexafluoro-
phosphate)
20 - - i -
(20) (& C12H25C6H4CH2)N(CH3)3PF6 (4 Dodécylbenzyltrlmethyl
ammonium Hexafluorophosphate)
(21) (n-C3H7) 4,NPF¢ (Tetrapropylammonium Hexafluorophosphate)

(22) (O”CHZCHZ\‘NHZ)PF6 (Morpholinium Hexafluorophosphate)

~ -~
CHZCH2

The tested combinations of the above solutes and solvents yielded
thirty-four (34) solutions with conductances in excess of 1 x 1072
ohm~l cm~l at either one-molal concentrations or less. They are:
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DMF

Solute Specific Conductance
(From Table Above) (ohm~1 em~1)
1. ¢D) .0237
2. %) .0106
3. (5 .0240
4. (6) .0222
5. @) . .0206
6. (8) .0121
7. ) .0100
8. (10) .0204
9. 11 .0241
10. (12) .0230
11. (13) .0215
12. (14 .0186
13. (15) ' .0227
14. (16) .0216
15. an .0198
16. (18) .0109
17. (19) .0208
18. (20) .0115
19. (21) .0205
20. (22) .0257
DMC
21. (1) .0149
22. (11D) .0181
23. (6) .0204
24, (12) .0237
25, (14) .0186
26. (15) .0228
27. (16) .0210
28. an .0194
29, (20) .0101
30. (21) .0216
31. (22) .0239
NMF
32. (2) .0109
33. 3 .0100
34. %) .0117

While the study is by no means complete, the following tentative
generalizations may be made:

|
N
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The solvent should preferably have a dielectric constant
of around 20 or higher, and a viscosity of less than 3
centipoises at room temperature. Higher dielectric con-
stant and lower viscosity will contribute to improved
conductivity.

The ability of the solvent to form complexes with the
ionic species of the solute contributes to the dissociation
into ions.

Most of the systems investigated showed maximum conductances
at solute concentrations in the range of 1 to 2 molal, in
contrast to aqueous systems which show maxima at 3 to 6 molal.

Solution viscosity increases slowly with solute concentration
to the conductance maximum, and thereafter climbs with greatly
increased rapidity.

Conductance maxima in general appeared at higher solute
concentrations in solvents of lower molecular weight. This

is probably because the availability of noncoordinated solvent
molecules (for a given solute concentration) goes up as
molecular weight (or perhaps more precisely, molecular volume)
goes down. Thus a higher concentration of solute can be
achieved before the onset of excessive viscosity increases.

The systems investigated most intensively to date have been
based on solvents whose ligand groups are capable of acting
as electron donors rather than as electron acceptors. We
would anticipate the formation of solvated complexes with
solute cations and not with solute anions, therefore. In
such systems solute solubility and solution conductance have
appeared highly dependent upon anion size, with larger size
being beneficial -- presumably through reduction in charge
density.

Increasing cation size in these systems also is somewhat
beneficial although not so striking as in the case of the
anions. The conductance of one-molal solutions of the alkali
hexafluorophosphates, for instance, increases slightly from
Li through to Cs. The solubility of the quaternary ammonium
salts, (which may not coordinate with the solvents), goes up
with increasing cation size.

Cation size can perhaps become excessive. The conductance of
one-molal p-dodecylbenzyl trimethylammonium hexafluorophosphate
is only about half that of other quaternaries with comparable
solubility. Viscosities of solutions of this salt are signifi-
cantly higher than those of other salts of smaller ion size.
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Recommendations.

For the continuation of our present work toward obtaining 200 watt-
hours per pound batteries, we feel that the following studies are
necessary:

1.

The investigation toward obtaining nonaqueous electrolytes
possessing conductance approaching that in the aqueous
range should be continued by studying the coordination
complexes more thoroughly. The possibility of using low
melting ionic salts should also be considered.

Electrochemical kinetics studies should be performed using
electrode couples possessing theoretical energy densities

in excess of 500 watt-hours per pound, together with aprotic
nonaqueous electrolytes. Properties such as activation
polarization should be examined in order to achieve more
understanding of the limitations on electrode behavior.
Special attention should be paid to the purity of the
materials used, with particular emphasis on freedom from
water.

More extensive study on the stability of low density
separator and case materials in the electrolytes should be
made.

Systems possessing favorable electrochemical characteristics

and stability should be assembled to study the performance

of prototype batteries. Attention will be given to electrode
design and construction to minimize the loss from 'dead weight."
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FIGURE 2. EFFECT OF CONDUCTANCE OF ELECTROLYTE
ON IR LOSS
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1)

2)

3)

4)

5)

6)

TABLE II. SERIES OF ETHERS FOR COORDINATION STUDIES

Diethylether

1, 2-dimethoxyethane

m-dimethoxybenzene

Bis(2~ethoxyethyl)ether

1, 2-Bis(methoxyethoxy)ethane

Bis[?-(2-methoxyethoxy)ethyi]ether

CHBCHZ-O-CHZCH3
CH4-0-CHy~CHy-0-CH3y

O 'CH3
CH3-
CH4CH,-0-CH, CH, -0~CHyCHy - 0-CH,CHj
CHy~0-CHyCH, -0-CH,CH, -0-CH,CHy -0-CHs

CH3-0~CH,CH,-0-CH,CH,-0-CHyCHy - 0-
CH,CH,~0-CHj
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FIGURE 5.

DRYBOX (INERT GAS PURIFICATION AND FEED LINES AND VALVES)
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Page No.

a. Specific Conductance of Benzonitrile Solutions . . . . . . . ., . ITI-15, TII-16

b. Specific Conductance of Dimethyl Cyanamide Solutions . . . . . . ITII-17, III-18

¢. Specific Conductance of Dimethylformamide Solutions . . . . . . III-19- III-25

d. Specific Conductance of Diphenylether Solutions . . . . , . . . I111-26

e. Specific Conductance of N-Methylformamide Solutions . . . . . . I11-27

f. Specific Conductance of Propylene Carbonate Solutions . . IIT-28 -I11I-32

g. Specific Conductance of Tetramethylurea Solutions . . . . . . . III-33, III-34

The fcllowing notes on ceoncentration of sclutions and experimental conditions are

referred to by number throughout Table IV.

(1) Solution was saturated. Test was made in open atmosphere.

(2) Gaseous solute was bubbled through the solvent for ten minutes. Conductance
was measured one hour afterward, Test was made in open atmosphere.

(3) Solute formed solid reaction product with the solvent. Conductance was
measured after redissolving some of the solid product. Test was made in open
atmosphere.

(4) Solute (or each solute) to solvent ratio was 1 g-mole to 1 kg. Solution was
apparently saturated. Test was made in a dry argon atmosphere.

(5) One molal solution. Test was made in a dry argon atmosphere.

(6) Solute at concentration of maximum conductance. Test was made in a dry argon
atmosphere,

(7) One gaseous solute and one solid solute were added to the solvent in the
order shown. The solid solute to solvent ratio was 1 g-mole to 1 kg. The
gaseous solute was bubbled through the solution (or solvent) until a maximum
conductance was obtained. Test was made in a dry argon atmosphere.

(8) Approximately a one molal solution. Test was made in.open atmosphere.

(9) Solution was saturated. Test was made in P205 desiccated atmosphere.

(*) Room temperature. This is about 25-30°C.

TABLE 1V.

SPECIFIC CONDUCTANCE OF NONAQUEOUS SOLUTIONS
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TABLE V. SPECIFIC CONDUCTANCE AND VISCOSITY
VS. CONCENTRATION OF SOLUTIONS

Page No.

a. NaPFg in Dimethyl Cyanamide . . . . . . . . . . . . . III-36
b. Di-n-butylammonium Hexafluoroarsenate in

Dimethyl Cyanamide . . . . . . . . . . . . . . . . [III-37
¢. N-benzyl N,N,N, - Trimethylammonium Hexafluoro-

antimonate in Dimethyl Cyanamide . . . . . . . . . III-38
d. CsPFg in Dimethylformamide . . . . . . . . . . . . . III-39
e, LiCl in Dimethylformamide . . . . . . . . . . . . . . III-40
f. KPFg in Dimethylformamide . . . . . . . . . . . . . . III-41
g. NaBFy in Dimethylformamide . . . . . . . . . . . . . III-42
h. NaPFg in Dimethylformamide . . . . . . . . . . . . . IIL-43
i. SbClg in Dimethylformamide . . . . . . . . . . . . . III-44
j. Morpholinium Hexafluorophosphate in

Dimethylformamide . . . . . . . . . . . . . . . . . III-45
k. KPF¢ in Propylene Carbonmate . . . . . . . . . . . .. ITI-46
1. KPF6 in Tetramethylurea . . . . . . . . . . . . . . . 1III-47

All tests were performed in a dry argon atmosphere unless otherwise
specified,
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Molality
1.00

1.25
1.48
1.70
2.04

2.38

Note:

cm—l)
o

-1

Specific Conductance (ohm

TABLE V.

a.

SPECIFIC CONDUCTANCE AND VISCOSITY
VS. CONCENTRATION OF SOLUTIONS

NaPF6

-Dimethyl Cyanamide

Specific g?ndugiance

Viscosity (25°C)

Molality
III-36

(ohm cm ) (Centipoises)
-2
1.96 x 10 - (27°¢C)
- )
2.08 x 10 (28 C) _—
-2
2.12 x 10 © (29°C) ---
2.12 x 107% (29°¢) 1.97
2.04 x 10”2 (28%) -
1.94 x 10 = (28.5%) 2.99
Solid residue present in every sample.
| | | | | | |
o025 p— it
.024 =]
.023 —
.022 F’ —
.021 p— —
.020 |~ -
.019 —
N 1 ] | | ] i |
1.0 1.2 1.4 1.6 1.8 2.0 2.4 2.6



TABLE V. SPECIFIC CONDUCTANCE AND VISCOSITY
VS. CONCENTRATION OF SOLUTIONS (Continued)

b. Di-n-butylammonium Hexafluoroarsenate-Dimethyl Cyanamide

Specific_?ondu tance Viscosity (25°C)
Molality (ohm = cm™ ) (Centipoises)
1.00 2.31 x 1072 (28°) -
1.24 2.43 x 1072 (28%) .-
-2
1.48 2.50 x 10 © (28.5°)
1.71 2.51 x 1072 (28°C) -
1.95 2.49 x 1072 (2809¢C) ---
2.31 2.42 x 1072 (28.5°C) 2.28
T | | | T | T | |
0.025} -
'_‘/‘\
‘s
0 0.024p -
paned
]
£
S 0.023} —
[\ 1]
[4]
=
8 0.022}~ -
(8]
=
o
g
S 0.021f- -
(8]
o
Ut
< 0.020}- -
(1)
o
/5]
0.019}= -
| | ] | | ] | 1 1

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

"Molality
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TABLE V. SPECIFIC CONDUCTANCE AND VISCOSITY
VS. CONCENTRATION OF SOLUTIONS

L

cm

-1

Specific Conductance (ohm

(Continued)

c. N-benzyl N,N,N-trimethylammonium Hexafluoroantimonate-Dimethyl Cyanamide

Specific_?ondgitance

Viscosity (250C)
(Centipoises)

Molality (ohm ~ cm *)
- o]
1.00 1.92 x 10 ~ (28 C)
- o
1.20 1.98 x 10 ° (28 C)
-2 o)
1.40 2.00 x 107¢ (28°0)
1.61 1.99 x 1072 (28°C)
1.90 1.95 x 1072 (28°C)
2.20 1.91 x 10°2 (29°)
LI | | | 1 | 1}
0.025 |— —
0.024 |- —_
0.023 |- -
0.022 | -
0.021 P
0.020 [~
0.019 ]
] ] | | ] 1
1.0 1.4 1.6 1.8 2.0 2.2 2.4 2.6
Molality
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TABLE V. SPECIFIC CONDUCTANCE AND VISCOSITY
VS. CONCENTRATION OF SOLUTIONS (Continued)
d. CsPFg in Dimethylformamide
Specific Conductance
Molality (ohm'1 cm-l)
0.382 1.44 x 1072 (30°C)
0.764 2.27 x 1072 (30°C)
-2
1.14 2.61 x 10~ (30°0)
1.375 2.55 x 1072 (28°C)
-2
1.53 2.61 x 10°° (30°0)
-2
1.715 (Solid Present) 2.46 x 10" (28°C)
2.29 (Solid Present) 2.54 x 1072 (36°C)
0.03 T T | | ) T T |
oo —
,\ _ X 3
n | -
B
(3]
o~ 0.02 pP— —
1
£ = .
o
N - -
9
=] - -
«
7 - -
3 —
g 0.01 [
& - -
[&]
z - .
o
(=W
[/5] - —
0 [N N W S SRR NN S
0 0.4 0.8 1.2 1.6 2.0
Molality
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Specific Conductance (ohm'1 cm'l)

TABLE V.

e.

VS. CONCENTRATION OF SOLUTIONS

SPECIFIC CONDUCTANCE AND VISCOSITY

LiCl in Dimethylformamide

Molality

0.012

0.010

0.008

0.006

0.004

0.002

0.0176

0.1057

0.526

0.672

1.052

2.186

2.667

3.035

Note:

This test was performed in open atmosphere at room

temperature,

Specific

(ohm

(Continued)

ondg tance
fondg!

cm

0.756 x 10~
3.

7.

w

12

10

.66

.01

3

1073

1073

1073

Molality
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TABLE V. SPECIFIC CONDUCTANCE AND VISCOSITY
VS. CONCENTRATION OF SOLUTIONS (Continued)
f. KPF¢ in Dimethylformamide
Specific_?ondgftance Viscosity (25°C)
Molality (ohm ~em ) (Centipoises)
0.0109 0.0714 x 1072 (270¢) 0.840
-2
0.0963 0.506 x 10 - (27°) 0.895
0.498 1.73  x 1072 (27°) 1.206
-2 o
0.76 2.15 x 100 ° (27%) 1.42
-2 o)
0.99 2.36  x 10°° (27%) 1.68
1.25 2.47  x 1072 (279C) 2.02
1.50 2.48 x 1077 27°%) 2.51
1.76 2.44  x 1072 (27°) 2.92
2.19 2.31  x 1072 (27%) 3.52
-2 o)
2.97 1.80 x 107¢ (29°c) 7.18
-2
3.99 1.20 x 10 ~ (28°0) 14.7
0.03

cm—l)

-1

Specific Conductance (ohm

(sastod1jus)) 4L311S00s1p



TABLE V. SPECIFIC CONDUCTANCE AND VISCOSITY
VS. CONCENTRATION OF SOLUTIONS (Continued)

g. NaBF4 in Dimethylforamide

Specific Conductance Viscosity (25°C)
Molality (ohm'1 cm-l) (Centipoises)

0.0196 0.109 x 1072 (28°¢) 0.923

) o
0.174 0.715 x 10°° (29°¢)
0.610 1.63 x 1072 (26°C) 1.67

-2 o)
1.01 2.046 x 10 ° (27 ¢) 2.10

-2
1.48 2.27 x 10 (28°C) 3.03
1.92 2.17 x 1072 (28°¢C) 3.47

-2 A .
3.02 1.81 x 10 (28*~C) 4,67
4,12 1.33 x 1072 (28°) 9.97

Note: Solid present in every sample (8-11%).

0.03_ T l | ] | | ! ‘ | |

cm-l)
—
o

-1

0.02

0.01

w

Specific Conductance (ohm
(sestod13ua)) L311s00s1p

i 0 1.0 2.0 3.0 4.0 5.0
Molality
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Specific Conductance (ohm~l cm~!)

TABLE V,

SPECIFIC CONDUCTANCE AND VISCOSITY
VS. CONCENTRATION OF SOLUTIONS

(Continued)

h. NaPFg in Dimethylformamide

" Molality

0.

0.

2.
4.

* Different batch of NaPF6 used.

401

995

.00

L496

.50

.98

.00

.36

88

02

NOTE: Solid present in every sample (8-11%).

Specific Conductance
(ohm™1! cm"l)

1.42 x 1072 (27°C)
2.33 x 1072 (29°)
2.14 x 1072 (29°C)
2.31 x 1072 (27°C)
2.24 x 1072 (29°C)
2.36 x 10-2 (29°C)
2.10 x 1072 (29°C)
2.00 x 1072 (27°C)
1.59 x 1072 (27°C)

0.475 x 1072 (29°C)

0.03—

0.01p—




Specific Conductance (ohm~! cm~1)

TABLE V,

SPECIFIC CONDUCTANCE AND VISCOSITY

VS. CONCENTRATION OF SOLUTIONS

i.

(Continued)

SbClq in Dimethylformamide

Specific Conductance

Molality (ohm™" cm™ ")
1.00 1.50 x 10-3 (26°C)
1.20 1.59 x 1073 (26°C)
1.40 1.65 x 1073 (26°C)
1.60 1.68 x 1073 (26°C)
1.80 1.68 x 10~3 (26°C)
2.00 1.66 x 1073 (25°C)
2.20 1.61 x 1073 (26°C)
| | |
0.0017 L_ _
0.0016 }—
0.0015 b— ]
0.0014 |— —
0.0013 fp— -
0.0012 | —
1 ] ]
0.8 2 1.4 1 1.8 2.0 2
Molality

IIT-44
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Specific Conductance (ohm-1 cm~1)

TABLE V,

0.04

0.03

0.02

0

.01

SPECIFIC.  CONDUCTANCE AND VISCOSITY
VS. CONCENTRATION OF SOLUTIONS (Continued)

j. Morpholinium Hexafluorophosphate in Dimethylformamide

Specific Conductance

Molality (ohm-1 cm—1)
1.0 2.57 x 10~2 (27°C)
2.0 2.91 x 1072 (28°C)
3.0 2.67 x 1072 (29°C)
4.0 2.23 x 1072 (30°)
5.0 1.66 x 1072 (28.5°C)
6.0 1.29 x 1072 (30°C)

° I rrri I Frn ' Fr b

Molality
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Specific Conductance (ohm~l ca~ 1)

TABLE V.

Molality
0.

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

SPECIFIC CONDUCTANCE AND VISCOSITY

VS. CONCENTRATION OF SOLUTIONS

(Continued)

.216

.40

.603

.80

.00

.20

.40

k.

KPFe¢ in Propylene Carbonate

Specific Conductance

(ohm~1

em~1)

4.11

6.78

7.19

7.24

x 10-3
x 1073
x 1073
x 1073
x 10-3
-3

x 10

x 1073

(25°C)
(25°)
(25°C)
(25°C)
(25°c)
(25°C) (Saturated)

(25°C) (Saturated)

Viscosity (25°C)
(Centipoises)

2.52

3.06

3.66

4.38

5.10

5.88

i
09}
(sestod13ua)) A3TSODISTA

M

olality
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TABLE V. SPECIFIC CONDUCTANCE AND VISCOSITY
VS, CONCENTRATION OF SOLUTIONS (Continued)

1. KPFg in Tetramethylurea

Specific Conductance (28°C) Viscosity (25°C)
Molality (ohm~! cm-1) (Centipoises)
0.0 : — 1.41
0.2u8 4.38 x 10°3 2.61
0.499 5.89 x 1073 3.47
0.746 6.06 x 1073 3.50
1.0 5.68 x 1073 4.82
1.26 5.00 x 107> 6.80
1.50 4.07 x 1073 —
0.007 ) T Y T T T T 1 T
~~
N
s .
9 0.006 = -
n <
'z <—— 3
o 0.005 = : b °
S 0.004 18 3
o ©
) o
2 -+
—— oy
3 0.003 6 3
3] ;‘
] ®
G
4 0.002 4. 2
@
[=9
[75]
0.001 - 2
0 \ \ i i | ] I ] |
0 0.4 0.8 1.2 1.6 2.0

Molality
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Specific Conductance (ohm™! cm=1)

0.010}p—

0.006f—

0.002p~

0 0.672 molal
X 3.035 molal

| | ] 1

20 40 60 80

Temp. (°C)

FIGURE 8. TEMPERATURE COEFFICIENTS OF CONDUCTANCE
OF LiCl1-DIMETHYLFORMAMIDE SOLUTIONS
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Solute

Blank 1
Blank 2
BeClo
BeF,
BC1

3
BF3

Blank 1
Blank 2

BeCl2

BeF2

BF3

Hr.

TABLE VI, FORMATION OF ETHER
COMPLEXES OF SOLUTES

M-DIMETHOXYBENZENE

Specific Con?uctance
(ohm™ ! cm” )

Exposure Observations

.94

x 1077 (R.T.) -

.91

.53 x 1079 (R.T.) ---

.33 x 1076 (31°¢) Yellow, exothermic reaction

.51 x 1079 (27°C) No apparent reaction

.24 x 107% (24.5°C) Red, exothermic reaction

.32 x 10~5 (42.5%C) Orange color, exothermic reaction
BISs [2-(2-METHOXYETHOXY)ETHYL] ETHER

Hr. Exposure 24 Hr. Exposure

.60 x 1079 (R.T.)  1.62 x 107°(18°C)---

.21 x 1079 (19.5°C) .- ---

.49 x 1072 (38°C) 1.66 x 10'9(18°C)Brown, exothermic reaction

.77 x 1077 (30°C) 1.27 x 1072(27°C)Milky, slightly exothermic

reaction
.64 x 1079 (54°C) --- Dark brown, exothermic reaction

x 1079 (71°¢) -~ Brown, exothermic reaction

ITI-50



TABLE VII, MIXED SOLVENT TEST RESULTS

a. KPFg-DMF-Acetone .

b. NaPF6-DMF-Acetone

All tests were performed in a dry argon atmosphere.

ITI-51

Page No.

IT1I-52
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Specific Conductance (ohm~! em~1)

TABLE VII.

MIXED SOLVENT TEST RESULTS

a. KPFg-DMF-Acetone

Solvent
Weight % Weight % Specific Conductance (28.5°C)
DMF Acetone (ohm'1 cm'l)
0.0 100 2.79 x 1072
18.9 81.1 2.95 x 1072
36.9 63.1 3.06 x 1072
53.8 46.2 2.94 x 1072
70.0 30.0 2.90 x 1072
85.3 4.7 2.70 x 1072
100 0.0 2.47 x 1072
Concentration of KPF6 = 1.5 molal.
0.034 j Y ! | T j | I
0.032 p- -
0.030
0.028
0.026
0.024
0.022 - —
0.020 1 1 | | i | ] 1 |
0 20 40 60 80 100
DMF Acetone

WT. % Acetone in Solvent
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TABLE VII, MIXED SOLVENT TEST RESULTS (Continued)

Specific Conductance (ohm-1 em™1)

b. NaPFg-DMF-Acetone

Solvent
Weight % Weight % Specific Conductance

DMF Acetone (ohm~ 1 cm 1)

0.0 100 3.54 x 1072 (28.5°C)
18.5 81.5 | 3.50 x 1072 (28°C)
36.2 63.8 3.18 x 1072 (28°%C)
53.2 46.8 3.01 x 1072 (28°C)
69.8 30.2 ‘ 2.59 x 1072 (28°)
85.3 14.7 2.39 x 1072 (28°C)

100 0.0 2.16 x 1072 (29°C)

Concentration of NaPF6 = 2.0 molal

0 20 40 60 80 100

DMF Acetone

WT. 7% Acetone in Solvent
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TABLE VIII. QUALITATIVE ELECTROCHEMICAL TEST RESULTS

a. Half Cell Potential of Anode

1) Mg/BF3-Properne carbonate (8.43 x 1074 ohm-lcm'l)
Reference electrode: Ag-AgCl
OCV after abrasion of Mg: 1.74 - 1.82; 1.70
OCV after electrochemical reduction of Mg: 1.71; 1.90 - 1.92
(approx. current density: 22 ,ua/cmz 115 /4451/cm2 1.2 ma/cm2
Discharge (

(voltage: 1.71 1.69 1.39

OCV after discharge: 1.71 1.71 1.71

2) Mg/A1C13-Propy1ene carbonate (6.16 x 10-3 ohm™lem™1)
Reference electrode: Ag-AgCl
OCV after abrasion of Mg: 1.70 - 1.78; 1.75 - 1.79

OCV after electrochemical reduction of Mg:1.75 - 1.78; 1.75

(approx. current density: 28lﬂm/cm2 115’ua/cm2 1.2 ma/cm2 3.5 ma/cm2
Discharge(

(voltage: 1.75-1.72 1.71-1.69 1.56 1.48
OCV after discharge: 1.73 1.71 1.72 1.75-1.71

3) Mg/AlCly-Benzonitrile
Reference electrode: Ag-AgCl
OCV after abrasion of Mg: 1.55
OCV after electrochemical reduction of Mg: 1.56 - 1.57

Note: Aqueous salt-acid immersion: 2.15 - stable 1.70 to 1.74 in 4 min.

4y Al/AlCl3-Benzonitrile
Reference electrode: Ag-AgCl

OCV after electrochemical reduction of Al: 0.84 dropped to 0.22

ITI-54



TABLE VIII. QUALITATIVE ELECTROCHEMICAL TEST RESULTS (Continued)

a. Half Cell Potential of Anode (Continued)

5) Mg/AlCly-Dimethyl formamide (4.09 x 1073 ohm™lem™1)
a) Reference electrode: Cd
OCV after abrasion of Mg: 0.67 - 0.725
OCV after electrochemical reduction of Mg: 0.72 - 0.74
(approx. current density: 284Aa/cm2 100)ua/cm2 1.85 ma/cm?
Discharge (
(voltage: 0.71 0.67-0.68 0.46-0.49
OCV after discharge: 0.725 0.72-0.74 0.74-0.80
Note: Near end of experiment - Cd gassing.
b) Reference electrode: Ni
OCV after abrasion of Mg: 1.24 - 1.63
OCV after electrochemical reduction of Mg: 1.50 - 1.58
6) Mg/BF3-Dimethyl formamide (7 x 1073 ohm-lcm'l)
Reference electrode: Cd
OCV after abrasion of Mg: 1.03 - 0.80
OCV after electrochemical reduction of Mg: 0.80
Note: Mg gassing.
7) Mg/LiCl-Dimethyl formamide (8.28 x 10-3 ohm'lcm'l)
a) Reference electrode: Cd
OCV after abrasion of Mg: 0.89 - 0.785; 0.85 - 0.765
OCV after electrochemical reduction of Mg: 2.04 - 1.98; 1.99 - 1.84
(approx. current density: 60/4a/cm2 240,Aa/cm2 1.3 ma/cm?
Discharge(
(voltage: 1.92-1.50 0.66-0.69 0.60-0.66

OCV after discharge: 1.80-1.82 1.06-1.60 0.85-1.00

Note: OCV after overnight standing = 0.485
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TABLE VIII, QUALITATIVE ELECTROCHEMICAL TEST RESULTS (Continued)

a. Half Cell Potential of Anode (Continued)

7) Mg/LiCl-Dimethyl formamide (8.28 x 10-3 ohm'lcm'l)
b) Reference electrode: Ni
OCV after abrasion of Mg: 1.18 - 1.55
OCV after electrochemical reduction of Mg: 2.81 - 2.85
Note 1: Mg gassing after overnight standing.
Note 2: Electrochemical reduction = 2.7 ma/cm2 for 20 min.
8) Mg/MgCly-Dimethyl formamide (4.87 x 10-3 ohm'lcm'l)
Reference electrode: Cd
OCV after abrasion of Mg: 0.78 - 0.93
OCV after electrochemical reduction of Mg: 1.33 - 0.85
Discharge (
(voltage: 0.80-0.875 0.1-0.85 0.5-0.785
OCV after discharge: 0.92-0.875 0.99-0.93 1.3-0.88
9) Mg/BF3-Benzonitrile (1 x 10-4 ohm'lcm'l)
Reference electrode: Cd
OCV after abrasion of Mg: 0.88 - 1.045
OCV after electrochemical reduction of Mg: 1.11 -~ 1.15
(approx. current density: 68/ua/cm2 330/Mp/cm2

Discharge (
‘(voltage: 0.955-0.94 0.10-0.12

OCV after discharge: 1.19 -1.22 1.26-1.27

Note: Black deposit on Mg electrodes.
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TABLE VIII. QUALITATIVE ELECTROCHEMICAL TEST RESULTS (Continued)

a. Half Cell Potential of Anode (Continued)

10) Mg/KI-Dimethyl formamide (1.96 x 10-2 ohm'lcm'l)

Reference electrode: Cd

OCV after abrasion of Mg: 0.47 - 0.31

OCV after electrochemical reduction of Mg: 0.43 - 0.31

(approx. current density: 70/uﬂ/cm2

Discharge (
(voltage: 0.08-0.12

OCV after discharge: 0.52-0.40

11) Mg/BCly-Dimethyl formamide (6.13 x 10-3 ohm™lem™1)

a) Reference electrode: Cd

b)

OCV after abrasion of Mg: 0.79 - 0.80
OCV after electrochemical reduction of Mg: 0.87
Note: Mg and Cd gassing. Cd darkened.
Reference electrode: Ni
OCV after abrasion of Mg: 1.70 - 1.69
OCV after electrochemical reduction of Mg: 1.71
(approx. current density: 390/&8/Cm2 1.73 ma/cm?
Discharge (
(voltage: 1.70 1.64
OCV after discharge: 1.71 1.71

Note: Mg gassing.

12) Mg/LiCl-Propylene carbonate (3.46 x 10'4 ohm'lcm'l)

Reference electrode: Ag-AgCl

OCV after abrasion of Mg: 1.39 - 1.50

OCV after electrochemical reduction of Mg: 2.20 - 1.39
(approx. current density: 200,44,a/cm2

Discharge (
(voltage: 0.70-1.21

OCV after discharge: 1.54-1.32

Note: Small granular black deposit on Mg electrodes.
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TABLE VITI, QUALITATIVE ELECTROCHEMICAL TEST RESULTS (Continued)

a. Half Cell Potential of Anode (Continued)

13) Mg/LiCl-A1Cl3-Propylene carbonate (6.75 x 10-3 ohm'lcm'l)
Reference electrode: Ag-AgCl
OCV after abrasion of Mg: 1.76 - 1.77
OCV after electrochemical reduction of Mg: 1.75 - 1.74
(approx. current density: 110/Aa/cm2 220)qa/cm2 440/4a/cm2
Discharge (
(voltage: 1.66-1.67 1.54-1.56 1.11-1.41
OCV after discharge: 1.73 1.72-1.73 1.73
Note 1: No change in electrode appearance after overnight on open circuit.
Note 2: LiCI-AlCl3-PC: 22g. AlCl3 in 200 cc. PC and saturated with LiCl.
14) Mg/KI-Propylene carbonate (5.04 x 1073 ohm'lcm'l)
a) Reference electrode: Ag-AgCl
OCV after abrasion of Mg: 0.73 - 0.79
OCV after electrochemical reduction of Mg: 1.21 - 0.91
: (approx. current density: 115/Ka/cm2
Discharge (
(voltage: 0.55-0.725
OCV after discharge: 0.86-0.84
Note: Mg anode gassing.
b) Reference electrode: Ag foil

OCV after abrasion of Mg: 0.775 - 0.715

OCV after electrochemical reduction of Mg: 1.28 - 0.65+
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TABLE VIII, QUALITATIVE ELECTROCHEMICAL TEST RESULTS (Continued)

a. Half Cell Potential of Anode (Continued)

15) Mg/BCl-Propylene carbonate (2.0 x 1073 ohm™lem™1)
Reference electrode: Ag-AgCl
OCV after abrasion of Mg: 2.09 - 2.08

OCV after electrochemical reduction of Mg: 2.07

(approx. current density: 1.1 ma/cm? 2.8 ma/cm?
Discharge (

(voltage: 2.01 1.93-1.94
OCV after discharge: 2.05-2.04 2.04

Note: Mg gassing.

Note: with reference to the foregoing table:

1) OCV = open circuit voltage (reference vs. anode).
2) All voltages are in volts.

3) Area of Mg anode: approximately 3 cm x 0.3 cm,

4) Electrochemical reduction: 100/*a/cm2 for 30 min.

Theoretical Potentials of the Reactions Study

7 Theoretical
Reactions E° (volts)
Mg + 2AgCl = MgCl, + 2Ag 1.93
Mg + CdCl, = MgCl, + Cd 1.29
Mg + NiCl, = MgCl, + Ni 1.65
Mg + CdF, = MgF, + Cd 1.98
Mg + 2AgI = Mgl, + 2Ag 1.52
Mg + Cdl, = Mg12 + Cca 0.82
Al + 3AgCl = AlClg + 3Ag 1.06
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TABLE VIII. QUALITATIVE ELECTROCHEMICAL TEST RESULTS (Continued)

b.
Reaction
Mg+CuF, = Mg
Mg+NiF, = Mg

1) Mg/KPFg-Propylene Carbonate (Sat
Initisl OCV: rises to 1.36 volts
OCV after charge at 3§#a/cm2

OCV after discharge at 29;(a/cm2

OCV after charge at l+0/¢a/cm2

OCV after discharge at 3Qya/cm?

2) Mg/NaBF,-Propylene Carbonate (Sa
Initial OCV: rises to 1.31 volts
OCV after discharge at 9qﬂa/cm2
OCV after charge at SQMa/cmz

OCV after charge at 1 ma/cm?

OCV after charge at 1 ma/cm?

OCV after charge at 1 ma/cm2

3) Mg/KPFg-Propylene Carbonate (Sat
Initial OCV: rises to 1.24 volts
OCV after discharge at 1§~a/cm2
OCV after charge at 2 ma/cm?

OCV after charge at 2 ma/cm2

OCV after charge at 2 ma/cm2

OCV after charge at 2 ma/cm2

Cell Potential

EO
F2+Cu 2.92 Volts
F2+Ni 2.21 Volts

.)/CuFy-Cu

in 10 minutes

for 6 min.: 1.38 volts -

for 70 min.: 0.84 volts

for 20 min.: 1.34 rises to 1.44 volts in 6 hrs.

for 20 min.: 1.30 rises to 1.43 volts in 87 hrs.

t.)/CuF,-Cu

in 20 minutes
for 30 min.: 1.31 volts
for 25 min.: 3.0 falls to 0.98 volts in 10 min.
for 50 min.: 2.56 falls to 2.07 volts in 10 min.
for 90 min.: 2.75 falls to 2.30 volts in 10 min.

for 80 min.: 2.8 falls to 2.31 volts in 10 min.

.)/NiF9-Ni

in 30 minutes
for 10 min.: 1.21 rises to 1.28 volts in 25 min.
for 10 min.: 2.98 falls to 2.7 volts in 4 min.
for 20 min.: 3.08 falls to 2.7 volts in 14 min.
for 30 min.: 3.10 falls to 2.7 volts in 22 min.

for 70 min.: 3.14 falls to 3.12 volts in 1 min.
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TABLE VIII.

b. Cell Potential (Continued)

4) Mg/NaBF,-Propylene Carbonate (Sat.)/NiFp-Ni

5)

6)

Initial OCV: rises to 1.24 volts in 20 minutes

QUALITATIVE ELECTROCHEMICAL TEST RESULTS (Continued)

OCV after discharge at QQua/cmz for 10 min.: 1.31 falls to 1.27 volts in 10 min.

OCV after charge

OCV after charge 2

at 0.3 ma/cm
OCV after charge

OCV after charge

for 60 min.:

at 1 ma/cm? for 10 min.: 2.15 falls to 1.44 volts in 10 min.

2.32 falls to 1.71 volts in 10 min.

at 0.25 ma/cm2 for 110 min.: 2.03 volts

at 0.2 ma/cm2 for 160 min.: 2.9 falls to 1.85 volts in 10 min.

OCV after discharge at 2§ga/cm2 for 20 min.: 1.37 rises to 1.44 volts in 3 win.

Mg/KPFg-Dimethyl Formamide (0.79 molal)/NiF,-Ni

Initial OCV: 1.20 wvolts

OCV after discharge at 30/4a/cm2 for
OCV after charge at 2 ma/cm? for
OCV after charge at 1 ma/cm? for

OCV after charge at 1 ma/cm? for

Mg/NaBF -DMF (0.68 molal)/Nin—Ni

Initial OCV: 1.22 volts

OCV after discharge at 30/4a/cm2 for
OCV after charge at 1 ma/cm? for
OCV after charge at 1 ma/cm? for

OCV after charge

OCV after discharge at 10/4a/cm2 for

10 min.:
10 min.:
40 min.:

300 wmin.:

10 min.:
10 min.:
70 min.:

at 0.3 ma/cm2 for 17 hr.:

5 min.:

1.06 rises to 1.16 volts in 30 min.

3.0 falls to 1.48 volts in 2 min.

3.1 falls to 1.68 volts in 2 min.

1

2

1

3.26 falls to 2.47 volts in 2 min.

.23

.18

.22

.42

.06

falls

falls

falls

falls

rises

to

to

to

to

to

Note: All current densities are approximate average values

based on Mg anode area.
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1.89 volts

1.80 volts

1.91 volts

1.52 volts

and are

in

in

in

in

in

10 wmin.
1 min.
3 min.
3 min,

160 min.
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TABLE IX. STABILITY OF ELECTRODE MATERIALS IN
SOLVENTS AND ELECTROLYTES AT ROOM TEMPERATURE

In

In

In

In

In

In

In

In

Dimethylformamide
A1C13—Dimethy1formamide .
BF3-Dimethylformamide
Propylene Carbonate
BF4-Propylene Carbonate .
Benzonitrile
A1C13—Benzonitrile

BF3—Benzonitrile
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APPENDIXES




APPENDIX T,

ENERGY DENSITY CURVES

A simplified family of curves has been found for the interrelationship
between cell voltage, equivalent weight of reacting materials, and energy
density (Figure 1, page III-5). The curves are based on the thermodynamic
equation,

(1) 4F_ = -nFE_

where 4F, = free energy of reaction expressed as watt-hours per pound

n = the number of g. equivalents per pound
F = Faraday constant expressed in ampere hours per g. equivalent
E, = cell voltage

To obtain a more useful form of this equation, we have related n to the
equivalent weight in grams (Weq),

g. equivalents _ 453.6 g/1b.

pound Weq g/g-equiv.

8 Ampere Hours
g. equivalent

n =

and F is expressed as 26.

Equation (1) can then be rewritten:

(2) 4F Lwatt-hours) _ -453.6 g/lb. . 26.8 AH x E_(volts)
; c
r (pound) Weq g. equiv.

If the constants are multiplied we obtain:

-C = -453.6 g/1b. x 26.8 —2E__ - _12 15¢.5 —&-AH
g. equiv. 1b.-g. equiv

Equation (2) then becomes:

(3) 4F (watt-hours) _ _C
r  (pound) Weq rams)
g/eq.

X EC(Volts)

Finally, rearrangement of (3) gives the equation:
(4F,)

%) Ec(volts) = ®

Weq(grams)/g. equiv.,

o x =W, m= 4T unich
(©)
is the equation of a straight line passing through the origin. The slope, m,

This equation is equivalent to y = mx (where y = E

Iv-1




of the line is A!zr . Since C is a constant, it is obvious that the free
energy of reaction (watt-hours per pound) must determine the slope of the
line. Thus, all points on the same line will have the same energy density.
Any point (x, y) is specific for a given electrode couple, and the point
also establishes the energy density of the couple. All couples on or above

the 500 watt-hour per pound line possess sufficient energy density to be

considered in our screening program.

A three digit code number was used to identify the anode-cathode couples
shown as circles on the figure, but no explanation of the meaning of

code numbers was given. Therefore, we describe these code numbers below.

The first number designates the anode material (e.g., Mg = 1). The second
number - i.e., the middle number - designates the metallic part of cathode
material (e.g., Co = 4). The third number combined with the second number
reveals the identity of the cathode material and also the relative
theoretical energy density of the anode-cathode couple (e.g., fluoride =

3 to 5; 3 for the highest energy density fluoride couple, 4 for the next
highest energy density fluoride couple, etc.). Thus, magnesium-cobalt
fluoride systems are designated by numbers 143, 144 and 145, and the energy

densities of these systems are in the following order: 143 214477145,

Code No. Watt-hours/1b. Reaction
143 550 3Mg + 2CoF3 —> 3MgFy + 2Co
144 454 Mg + Con - MgF, + Co
145 427 Mg + 2CoF5 —> MgF, + 2CoF,

The applicable chemical equations, energy densities, and the corresponding

code numbers are presented in Table I.
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INVESTIGATIONS OF HIGH ENERGY DENSITY
ELECTROCHEMICAL SYSTEMS

Part 1 — Electrolytes

W. E. Elliott, S. L. Hsu, W. |. Towle
Globe-Union Inc.

Introduction:

The objective of this research program is to develop a
primary battery with an energy density of 200 watt-hours per
pound of total battery weight. The work is conducted under
the sponsorship of the National Aeronautics and Space Ad-
ministration, Lewis Research Center, on contract NAS3-2790.

Commercial primary battery clectrode couples do not
possess sufficiently high theoretical free energy densities to

Iv-3

meet the objectives of such a program. The inability to realize
10097 of the energy from the active material and the presence
of such "dead weight” items as separators, case, electrolyte,
etc. usually result in an energy yield per pound of 404 or less
of the theoretical free energy density of the electrode couple.
Thus a minimum value of 500 watt-hours per pound based
on active material alone will be required for a real system to
yield 200 wart-hours per pound. This requirement immediacely



limits the suitable electrode materials to those of low equiva-
lent weight and high energy. If the anodes are to be metals,
they must be selected from the upper left-hand corner of the
periodic table, groups IA and ITA. Cathode depolarizers should
also have low equivalent weight and in general will consist
of two or more elements selected from the right-hand side of
the periodic table. Some examples of couples which meet the
theoretical energy requitements are shown in Table 1.

TABLE 1
HIGH ENERGY DENSITY ELECTRODE COUPLES
AT 25°C.

REACTION? E° WH/LB

2 Li + CuF, = 2LiF + Cu 3.55 749
2 Li 4+ NiF, = 2LiF 4+ Ni 2.83 620
2 Li 4+ NiCl,.= 2LiCl <+ Ni 2.57 437
31li + CoF; = 3LiF + Co 3.64 965
Li + CoF; = LiF -+ CoF. 5.14 510
2Li + CoF, = 2LiF 4+ Co 288 633
2L 4+ Cu0O = Li,O + Cu 2.25 587
2Li +4 NiO = 1Li,0 + Ni 1.79 492
Mg + CuF, = Mgk, + Cu 2.92 566
Mg + Nif; = MgF, + Ni 221 445
3 Mg 4+ 2CoF; = 3MgF, + 2Co 2.89 691
Mg + CuO = MgO + Cu 230 538
Mg + NiO = MO + Ni 183 451
Mg + Ag0 = MgO + Ag 298 491
Ca 4+ CuF, = CaF, + Cu 3.51 604
Ca + NiF;, = CaF, + Ni 2.82 501
Ca+ CuO = CaO + Cu 2.47 503

The use of highly active metal anodes precludes the use
of aqueous electrolytes because reaction with water would
result in wasteful corrosion of the metal, hydrogen gas evol-
ution, and reduced electrode potentials. Thus, whatever solvents
are used, they should preferably be aprotic in nature.

Referring again to the figure of 500 watt-hours per pound,
the use of this value implies also that the polarization and IR
loss in the new systems will be roughly comparable with those
in existing systems. Figure 1 illustrates the importance of
electrolyte conductivity on IR loss. Since the electrolyte not
only thus determines IR loss but may influence concentration
and activation polarization as well, its importance as a key
factor in overall battery performance is readily recognized.
Because the nature of concentrated nonaqueous electrolytes is
not sufhciently well understood, 2 our investigation up to this
time has been primarily directed toward a clarification of the
basic factors influencing their behavior, and has been based to
some extent on data obtained by otherst. The ultimate goal
of this part of the program is to achieve a substantially im-
proved nonaqueous electrolyte with electrical conductivity
hopefully approaching that of aqueous systems.

Agneouns Electrolytes:

As a reference point, many aqueous solutions possess
properties which are required for a good battery electrolyte.
In considering the properties which make water a particularly
good solvent for such service, we note the following:?*

k forms hydrogen bonds, which contribute to a high di-

electric constant, thus facilitating the dissolution and separ-
ation of positive and negative ions. It forms coordination
complexes with positive ions, thus providing them with a
sheath which may further promote dissolution and separation
of ions by reduction in charge concentration. It has a low
viscosity, allowing high ion mobility. It has a low molar vol-
ume which permits more molecules of high dielectric constant
in the space between ions and thus helps minimize ionic in-

10

IR Loss(volts/mm)

-4 - - -
10 IO3 IO2 IOI |

Current Density (amp/ cm2)

Figure 1. The effect of the specific conductance on IR losses at an
electrode spacing of 1 mm.

teractions which reduce the conductance and mobility of the
ions. Water also possesses the property of allowing exception-
ally high hydrogen and hydroxyl ion mobility due to quantum
mechanical effects. It has a wide liquidus range, particularly
with dissolved ionic substances. The effect of this combinarion
of properties is that high solubility and a high degree of
dissociation are commonly observed with ionic materials in
aqueous solution.

For reference it is now of interest to observe the character-
istics of aqueous electrolytes, as summarized in Table II Im-
portant points to note are:

1) The limiting equivalent conductance values, A-, all fall

within a half an order of magnitude, even when the hydro-
. gen ion or hydroxyl ion is present.

2) The range of equivalent conductance, A, at maximum
conductance is even narrower than that of the limiting
cquivalent conductance except for the weak electrolytes.

3) The concentration of each solute at maximum conducrance
is quite high, 3-6 molal, yer the apparent degree of dis-
sociation, A/A., generally exceeds 25¢%.

4) The maximum specific conductance, L, of most strong
electrolytes in water falls into the range of 107! to 1 ohm?
cml,

A feature of the aqueous solutions is the decrease in the
apparent degree of dissociation with increasing concentration,
lon pair formation, multiple ion formation, the relaxation ef-
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TABLE II
CONDUCTANCE IN AQUEOUS SOLUTIONS AT 18°C.
SOLUTE Ao ? L’ Crmex® Amax® Amax [ Ao
H>S0, 3834 074 44 98.9 0.26
HCI-15°C 362 0.76 69 1262 0.35
NaOH 2138 035 44 800 0.37
KOH-15°C 220 0.54 6.0 96.8 0.44
KCI 1299 028 3.6 87.5 0.67
LiCl 988 0.17 5.9 31.9 0.32
KI 1304 043 74 782 0.60
NH.,CI 1299 040 6.2 80.5 0.62
NaAc 778  0.065 3.0 242 0.27
HAc 350 0.0016 42 0.47 0.0013
NH;-15°C 220 0.0011 24 0.475  0.0022

fect and the electrophoretic effect all restrict the specific con-
ductance by interfering®® with the freedom and mobility of
the ions. An indication of the effect of these interactions is
shown by the increased viscosity which can be attributed to
the larger aggregates of solutes or solvated groups as the
concentrations are increased. The net effect of the sum of
these interactions is demonstrated by Figure 2, showing con-

.5 1 T I T T

>
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3}- .

KCI KF

»
T

Specific Conductance ( ohm™! cm™!)
!

0 1 1 I 1 1
o 2 4 6 8 10 12

g-equiv solute / 1000 g HO

Figure 2. The effect of solubility and ion size on the conductance
of aqueous solutions at 18°C.

centration vs. specific conductance for aqueous solutions. It
is noteworthy that many of the curves pass through a maxi-
mum, particularly where solubility is high. Thus it appears
that water might perform even better as a solvent if it were
not subject to these interactions.

Nonaqueous Electrolytes
The limiting equivalent conductances of some nonaqueous
electrolytes are compared to those of aqueous electrolytes in
Table III. Certain aspects of the data are noteworthy.
1) The solvent appears to control the A- value regardless of
the solute used.

2) The dielectric constant does not of itself dominate the
A- values.

3) The viscosity of the solvents is very important. This can
be observed by comparison of the A. values of the low
viscosity liquids with those of high viscosity. If Walden's
rule (Aon = constant) is applied to the average values
of A. for all the solutes in a given solvent, a rematkably
high degree of uniformity is observed.

TABLE III
THE COMPARISON OF LIMITING EQUIVALENT
CONDUCTANCES OF AQUEOUS AND NONAQUEOUS
ELECTROLYTES AT 25°C.

H.O? CH,OH®* HCN? DMF* FA? NMF®
(18°C) i
£—78.3 £=132.6 £e—=118.2 £=36.7 £€=—=109.5 £e=182.4
n=20.89 N=0.54 1=0206 n=0.796 n=3.3 mn=1.65
LiC1 114.95 92.2 345.4
NaCl  126.45 97.6
KC1 149.85 104.8 363.4 29.85  41.9
KBr 151.7 108.95 363.2 84.1 43.7
KI 150.3 115.15 363.9 82.6 29.3 45.0
RbC1  154.15 108.6 ° 363.2
st 153.55 113.6 ¢ 368.2
KCNS 1145 ° 358.0 90.3
KNOs  144.96 114.5 ° 353.9 88.1
KC10, 140.% 353.3 32.8
Nal 126.9 107.97 82.0 2674 444
Ao 141.4 107.8 359.2 85.0 28.6 43.8
A 1258 58.2 75.4 67.6 94.5 722
Experimental

It is apparent from the above analysis that battery elec-
trolytes will have to be at a relatively high concentration of
solute. Only a limited amount of work has been done in this
area in nonaqueous solvents. Therefore, the principal need
for experimental data is to furnish information on principles
governing conductance at higher concentration. To provide
this, a broad examination of many solute-solvent systems is
needed. In order to move rapidly, we chose to examine the
conductivities of many mixtures of solutes and solvents in a
one-molal ratio. That is, sufficient solute was used to produce
a one-molal solution at complete solubility. We then simply
noted whether the solute did or did not dissolve at this con-
centration. In most cases complete solution did not occur; thus
the values obtained represent saturated solutions. Where com-
plete solution occurred, the values are so indicated in the
accompanying data.

Table IV illustrates the type of data obtained. The follow-
ing points are noteworthy:

1) Contrary to the behavior in water, each of the three
aprotic solvents tested yielded a range in conductivity
covering several orders of magnitude. This is perhaps
due to wide variations in solubility aithough quanticative
data have not yet been obtained.

2) The solvent is a dominating factor in determining the
overall level of conductivity.

3) The quarternary ammonium salt, tetrabutylammonium
iodide, gives higher conductivities in the organic solvents
than in water probably because of higher solubility, at-
tributable perbaps to the solubilizing influence of the butyl
groups, in the aprotic solvents.
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4) Suikingly, the salts arrange themselves with rather few
exceptions in the same order of conductivity in the three
aprotic solvents.

5) It is also apparent that compounds with the largest ions
lie at the top of the table while those containing at least
one small ion are at the bottom of the table.

The influence of the solutes is demonstrated more graphi-
cally in Figure 3, showing solubility data in dimethylforma-
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Figure 3. Effect of solutes on the specific conductance in N,N’di-
methyl formamide at 25°C.

Note: Encircled values are 1 molal solutions; all others became
saturated solutions at less than a 1 molal concentration.

mide. It appears that the anion size has a direct influence on
solubility and conductivity.

Cation influence is apparently more complicated, possibly
because of varying degrees of solvation. More quantitative
data are needed for further clarification of the picture.

Summary

The theoretical free energy density for suitable electrode
couples should be at least 500 watt-hours per pound, even
assuming that polarization and IR losses are as good as for
the best existing systems. Since the highly active electrode
materials thus required would decompose water, aprotic elec-
trolytes are needed. Aqueous battery electrolyes possess con-
ductances of approximately 5 x 107! to 1 ochm! cm’', while

v

1

6

TABLE IV

SPECIFIC CONDUCTANCE OF
NONAQUEOQOUS ELECTROLYTES AT 25°C.

WATER DMF PC BN
£==78 e=137 £e—=64 =25
n=20.89 n—0.80 n—=2.53 n=1.05

KPFg 4.4x10 2.5x102  7.8x10%  3.6x10*
KI 1.1x107t 2.2x1072 5.2x10°3 1.3x107¢
TBAI 2.2x103 1.1x10%  4.5x10°3

NaBF, 6.5x10°2 1.0x102  1.1x10%  3.8x10°%
LiCl 7.1x10 8.3x103  3.4x10*  1.4x10°®
BeCl, HYDROLYZES 2.1x10% 5.0x10%*  57x10°
KF 6.1x107? 49x10%  2.8x10%  1.1x10°®
NaF 5.5x102 3.4x10°¢  1.2x107%  8.0x107
BLANK 20x10%  1.2x10%  1.7x107

Note: Underlined figures are 1 molal solutions; all nthers'became
saturated solutions at less than a 1 molal concentration.

best presently known nonaqueous systems are approximately
102 to 5 x 102 ohm™ cm'l. Thus the development of im-
proved electrolytes is the key to new high energy batteries.

At very low concentrations the behavior of many different
ionizable solutes is quite uniform in a given solvent, the con-
ductivity level thus being determined by the properties of
the solvent itself. As concentration increases, major differences
in conductivity appear, apparently dependent mainly upon lim-
its of solubility. Solubility appears to increase with increas-
ing ion (or solvated ion) size, but other factors may be
important. Much remains to be done in the clucidation of
this aspect of the problem.

Symbols

E° = Standard electrode potential in volts

WH/us = Watt-hours per pound

BN = Benzonitrile

DMF = Dimethvlformamide

FA = Formamide

NMF = N-Methylformamide

PC = Propylene Carbonate

TBAI = Tetra Butyl Ammonium Iodide

€ = Dielectric Constant

n = Viscosity in Centipoises

Ao = Equivalent Conductance at infinite dilution

Amax = Equivalent Conductance at Lmax concentration
max = Maximum Specific Conductance

Ao = Average A-

CLmax = Molal concentration at Lmax
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